extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C22⋊C4)⋊1C2 = S3×C22≀C2 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 24 | | (S3xC2^2:C4):1C2 | 192,1147 |
(S3×C22⋊C4)⋊2C2 = C24⋊7D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):2C2 | 192,1148 |
(S3×C22⋊C4)⋊3C2 = C24.44D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):3C2 | 192,1150 |
(S3×C22⋊C4)⋊4C2 = S3×C4⋊D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):4C2 | 192,1163 |
(S3×C22⋊C4)⋊5C2 = C6.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):5C2 | 192,1169 |
(S3×C22⋊C4)⋊6C2 = D12⋊20D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):6C2 | 192,1171 |
(S3×C22⋊C4)⋊7C2 = C6.422+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):7C2 | 192,1172 |
(S3×C22⋊C4)⋊8C2 = D12⋊21D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):8C2 | 192,1189 |
(S3×C22⋊C4)⋊9C2 = C6.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):9C2 | 192,1196 |
(S3×C22⋊C4)⋊10C2 = S3×C22.D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):10C2 | 192,1211 |
(S3×C22⋊C4)⋊11C2 = C6.1202+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):11C2 | 192,1212 |
(S3×C22⋊C4)⋊12C2 = C6.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):12C2 | 192,1213 |
(S3×C22⋊C4)⋊13C2 = C6.612+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):13C2 | 192,1216 |
(S3×C22⋊C4)⋊14C2 = C6.1222+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):14C2 | 192,1217 |
(S3×C22⋊C4)⋊15C2 = C6.622+ 1+4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):15C2 | 192,1218 |
(S3×C22⋊C4)⋊16C2 = S3×C4.4D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):16C2 | 192,1232 |
(S3×C22⋊C4)⋊17C2 = D12⋊10D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):17C2 | 192,1235 |
(S3×C22⋊C4)⋊18C2 = C42⋊22D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):18C2 | 192,1237 |
(S3×C22⋊C4)⋊19C2 = C42⋊23D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):19C2 | 192,1238 |
(S3×C22⋊C4)⋊20C2 = C42⋊25D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):20C2 | 192,1263 |
(S3×C22⋊C4)⋊21C2 = C42⋊26D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):21C2 | 192,1264 |
(S3×C22⋊C4)⋊22C2 = S3×C23⋊C4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 24 | 8+ | (S3xC2^2:C4):22C2 | 192,302 |
(S3×C22⋊C4)⋊23C2 = C24.35D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):23C2 | 192,1045 |
(S3×C22⋊C4)⋊24C2 = C24.38D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):24C2 | 192,1049 |
(S3×C22⋊C4)⋊25C2 = C42⋊9D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):25C2 | 192,1080 |
(S3×C22⋊C4)⋊26C2 = C42⋊12D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):26C2 | 192,1086 |
(S3×C22⋊C4)⋊27C2 = C42⋊13D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):27C2 | 192,1104 |
(S3×C22⋊C4)⋊28C2 = D12⋊23D4 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):28C2 | 192,1109 |
(S3×C22⋊C4)⋊29C2 = C42⋊18D6 | φ: C2/C1 → C2 ⊆ Out S3×C22⋊C4 | 48 | | (S3xC2^2:C4):29C2 | 192,1115 |
(S3×C22⋊C4)⋊30C2 = C4×S3×D4 | φ: trivial image | 48 | | (S3xC2^2:C4):30C2 | 192,1103 |